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Abstract

This paper presents a numerical study of the formation of longitudinal vortices in natural convection ¯ow over

horizontal and inclined plates. The criterion on the position marking on the onset of longitudinal vortices is de®ned in

the present paper. The results show that the onset position characterized by the Grashof number depends on the Prandtl

number, wave number, and the inclined angle / from the horizontal. The ¯ow is found to become more stable to the

vortex mode of instability as the value of inclined angle increases, owing to a decrease in buoyancy force in the normal

direction. However, the Prandtl number has a destabilizing e�ect on the ¯ow. The results of the present numerical

prediction show a reasonable agreement with the experimental data in the literature. Ó 2001 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

The problem of thermal instability in a laminar nat-

ural convection ¯ow over horizontal and inclined plates

has received attention in the heat transfer literature. The

instability mechanism is due to the presence of a buoy-

ancy force component in the direction normal to the

plate surface. The appearance of longitudinal vortices

was observed (e.g. [1±3], etc.). The onset and develop-

ment of longitudinal vortices are of interest because of

their importance to industrial applications such as

chemical vapor deposition [4] and cooling of electronic

packages [5,6]. It is advantageous to suppress the vor-

tices so as to achieve uniform deposition in chemical

vapor deposition processes. In contrast, it is desirable to

enhance the vortices so as to induce earlier transition to

turbulence and increase heat transfer from the surface in

surface cooling.

There is a large body of literature on the vortex in-

stability in natural convection ¯ow over horizontal and

inclined plates (e.g. [3,7,8], etc.). However, a quantitative

agreement between theory and experiment for the onset

of vortex instability of the ¯ow under consideration

is still unsatisfactory. The discrepancy between the

theoretical critical Grashof number Gr�X and these

experimental data were one to two orders in the litera-

ture. By reviewing the criteria on the onset of longitu-

dinal vortices in boundary layer and channel ¯ows, the

experimental and numerical methods employed in the

literature for determining the onset of longitudinal

vortices were summarized in [9].

The attempt of this paper is to present a numerical

experiment for the onset and subsequent linear devel-

opment of longitudinal vortices in natural convection

¯ow over horizontal and inclined plates. The exper-

imental criteria proposed by Hwang and Lin [9] on the

onset of longitudinal vortices were employed in the

present study. The governing parameters on the onset of

longitudinal vortices are the Prandtl number, the wave

number a, the inclined angle / from the horizontal, and

the Grashof number. In the computation, the Prandtl

number is 0.7 (for air) and 7.0 (for water), the inclined

angle from the horizontal / � 0°, 5°, 10°, 15°, 20°, 30°,

45°, 60°, and 70°, the magnitudes of imposed initial

International Journal of Heat and Mass Transfer 44 (2001) 1759±1766
www.elsevier.com/locate/ijhmt

* Tel.: +886-3-5927700; fax: +886-03-5921047.

E-mail address: aemhlin@et4.thit.edu.tw (M.-H. Lin).

0017-9310/01/$ - see front matter Ó 2001 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 1 7 - 9 3 1 0 ( 0 0 ) 0 0 2 1 3 - 1



disturbance temperature t0 � 10ÿ4, and the ¯at plate

Grashof number GrL � 108.

2. Theoretical analysis

Consider a laminar natural convection ¯ow over

horizontal and inclined heated plates, as shown in Fig. 1.

The acute angle of inclination from the horizontal is /.

The physical Cartesian coordinates are chosen such that

X measures the streamwise distance from the leading

edge of the plate, Y is the distance normal to the plate,

and Z is in the transverse direction. The streamwise and

normal velocity components are Ub and Vb. The gov-

erning boundary layer equations for constant-property

¯uids under the Boussinesq approximation can be

written as

oUb

oX
� oVb

oY
� 0; �1�

Ub

oUb

oX
� Vb

oUb

oY

� m
o2Ub

oY 2
� gb cos /

o
oX

Z 1

Y
�Tb ÿ T1� dY

� gb�Tb ÿ T1� sin /; �2�

Ub

oTb

oX
� Vb

oTb

oY
� a

o2Tb

oY 2
; �3�

where Tw is the surface temperature and T1 is the free-

stream temperature.

Next, one introduces the following dimensionless

variables and parameters:

X � Lx; Y � LGrÿ1=5
L y;

Ub � m
L

Gr2=5
L �u; Vb � m

L
Gr1=5

L �v; hb � Tb ÿ T1
Tw ÿ T1

; �4�

g � YGr1=5
X =X ; f �X ; g� � w m=Gr1=5

X

� �ÿ1

;

where f �X ; g� is the reduced stream function. The basic

¯ow equations (1)±(3) transformed from �X ; Y � into the

�X ; g� plane are:

Nomenclature

a0 dimensional wave number, a0 � 2p=k
a dimensionless wave number, a � a0L=Gr1=5

L

F velocity, pressure or temperature function

f reduced stream function, w�m=Gr1=5
X �ÿ1

GrX local Grashof number,

GrX � �gb�Tw ÿ T1� X 3�=m2

h local heat transfer coe�cient

p0; p dimensional and dimensionless pressures,

p0 � qm2Gr4=5
L p=L2

Pr Prandtl number, m=a
NuX local Nusselt number, hX=k
T temperature (K)

t0; t dimensional and dimensionless

perturbation temperatures, t0 � �Tw ÿ T1�t
t0 initial constant perturbation temperature at

x � 0

U ; V ;W dimensional velocity components (m/s)

u; v;w dimensionless perturbation velocity

components

u0; v0;w0 perturbation velocity components

X ; Y ; Z Cartesian coordinates (m)

x; y; z dimensionless Cartesian coordinates as

de®ned in (14)

Greek symbols

d boundary layer thickness (m)

g similarity variable, YGr1=5
X =X

hb dimensionless basic temperature,

�T ÿ T1�= �Tw ÿ T1�
k wavelength in the Z-direction (m)

m kinematic viscosity of the ¯uid (m2=s)

n vorticity function in the X-direction

de®ned in (15) (1/s)

w stream function (m2=s)

Superscript

� onset position

Subscripts

b basic ¯ow quantity

p perturbation quantity

w wall condition

X local coordinate

1 free stream condition

Fig. 1. Physical con®guration and coordinate system.
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The boundary conditions are as follows:

f �X ; 0� � f 0�X ; 0� � hb�X ; 0� ÿ 1 � 0;

f 0�X ;1� � hb�X ;1� � 0:
�7�

In Eqs. (5)±(7), the primes denote the partial derivatives

with respect to g and Pr is the Prandtl number.

2.1. Perturbation equations

In the region near or upstream of the onset position

x�, the disturbances of the longitudinal vortex type are

small and the nonlinear terms in the momentum and

energy equations may be linearized. Furthermore, in

experiments [1±3], etc. `stationary' longitudinal vortex

rolls have been found tobe periodic with a wavelength k
in the transverse direction Z. Therefore, the disturbances

superimposed on the two-dimensional basic ¯ow quan-

tities can be expressed as

F �X ; Y ; Z� � Fb�X ; Y � � f 0�X ; Y � exp�ia0Z�;
W �X ; Y ; Z� � w0�X ; Y �i exp�ia0Z�; �8�

where F � U ; V ; P or T ; f 0 � u0; v0; p0 or t0 � a0 � 2p=k is

the dimensional transverse wave number of the vortex

rolls. By a consideration of the vortex-type perturbation

quantities in the continuity equation, a di�erent ex-

pression for W is used.

Substituting Eq. (8) into the continuity, Navier±

Stokes, and energy equations in Cartesian coordinates,

and subtracting the two-dimensional basic ¯ow and

energy equations under the assumptions of GrL � 1, one

can obtain the linearized perturbation equations.

ou0

oX
� ov0

oY
ÿ a0w0 � 0; �9�

Ub

ou0

oX
� u0

oUb

oX
� Vb

ou0

oY
� v0

oUb

oY

� gb�t0 ÿ T1� sin /ÿ 1

q
op0

oX
� mr2u0; �10�

Ub
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oX
� Vb

ov0

oY
� v0

oVb

oY

� gb�t0 ÿ T1� cos /ÿ 1

q
op0

oY
� mr2v0; �11�

Ub

ow0

oX
� Vb

ow0

oY
� ÿ 1

q
op0

oZ
� mr2w0; �12�

Ub

ot0

oX
� Vb

ot0

oY
� u0

oTb

oX
� v0

oTb

oY
� ar2t0; �13�

where b is the coe�cient of thermal expansion and

r2 � �o2=oY 2� ÿ a02 is a two-dimensional Laplacian

operator. The perturbation equations are two-dimen-

sional and of boundary layer ¯ow-type.

Next, one introduces the following dimensionless

variables and parameters:

X � Lx; Y Z� � � LGrÿ1=5
L y z� �;

Ub u0
� � � m

L
Gr2=5

L u u� �; Vb v0 w0
� �

� m
L

Gr1=5
L v v w� �; �14�

Tb

� ÿ T1 t0
� � Tw� ÿ T1� hb t� �; p0 � qm2

L2
Gr4=5

L p;

a0 � Gr1=5
L

L
a;

GrL � gb�Tw ÿ T1�L3

m2
;

and a vorticity function in the axial direction

n � ow
oy
ÿ ov

oz
� ow

oy
ÿ av: �15�

To obtain equation for the vorticity, one may dif-

ferentiate Eqs. (11) and (12) by z and y, respectively,

and then eliminate the pressure terms by subtracting

one from another. To derive the equation for v, one

may di�erentiate Eq. (15) with respect to z. Similarly,

the equation for w can be obtained by di�erentiating

Eq. (15) by y. It is noted that in the derivation of

equations for v and w, the continuity Eq. (9) must be

considered. By also using the similarity variable

g � y=x2=5, the perturbation equations in g and x plane

are found:

o2u
og2
� 3

5
f

�
� x

of
ox

�
ou
og
ÿ xf 0

ou
ox

ÿ 1

5
f 0

�
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ÿ 2

5
gf 00
�

u

� f 00x3=5v� Gr1=5
L x4=5t sin /; �16�

o2t
og2
� 3

5
f

�
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of
ox

�
Pr
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og
ÿ xf 0Pr

ot
ox
ÿ a2x4=5t

� xÿ1=5Pr
ohb

og

�
ÿ 2

5
gu� x3=5v

�
� Pr ux4=5 ohb

ox
; �17�
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o2v
og2
ÿ x4=5a2v � ax2=5nÿ x2=5 o2u

oxog
� 2

5
xÿ3=5g

o2u
og2

� 2

5
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o2w
og2
ÿ x4=5a2w � x2=5 on

og
ÿ ax4=5 ou

ox
� 2

5
axÿ1=5g

ou
og
: �20�

The above equations are in x±g plane instead of x±y
plane. The g axis covers all the variations of main ¯ow in

the x±y plane and probably most of the variations of

perturbation quantities. Therefore, the computation

time for solving Eqs. (16)±(20) may be much shorter

than that for equations in the x±y plane. The set of

equations (16)±(20) is a boundary value problem in the

g-direction, an initial value problem in the x-direction,

and an eigenvalue problem in the z-direction. This type

of formulation and approach completely abandons the

conventional approach in seeking an unde®ned solution

with ®xed zero or other ®nite values of x-derivatives.

The growth of the magnitude of longitudinal vortices is

part of the solution. The appropriate initial condition

and boundary conditions of the perturbation equations

are:

u � v � w � t � 0 at g � 0;

u � v � w � t � n � 0 at g � 1;
u � v � w � n � t ÿ t0 � 0 at x � 0:

�21�

For simplicity, the initial amplitude function t0 is set

uniform, and the other velocity components u, v and w

are set to zero. However, the magnitudes of the veloci-

ties u, v and w will be generated in the next x-steps. The

magnitude of the initial amplitude function, t0 � 10ÿ4 is

used in the present study.

Eqs. (16)±(20) and boundary conditions (21) in the x±

g plane are for unknowns u; t; n; v and w with two

®xed values of a and GrL. By giving a series value of a,

the largest ampli®cation of the perturbation quantities

along the x-direction determines the value of the

critical wave number a�. One may analytically prove

the homogeneity of L for / � 0° in Eqs. (16)±(20)

by considering the dimensionless transformations

(14), i.e., u� Lÿ1=5; v� L2=5; w� L2=5; a� Lÿ2=5; x� Lÿ1;
y� Lÿ2=5; z� Lÿ2=5; and n� L4=5 (variables of g and f are

independent of L). In the computation, the selection of

GrL does not change the local critical Grashof number

Gr�X and the critical wave number �ax2=5��. This is also

proved by using several values of GrL in the computa-

tion. The present study, GrL� 108 is used for demon-

strating the results.

The local Nusselt number of the basic and perturbed

¯ows can be also expressed as,

NuX � Nub � Nup � �hb � hp�X
k

� ÿGr1=5
X h0b�x; 0�
�

� ot�x; 0�
og

����
w

�
or

NuX

Nub

� 1

�
� ot�x; 0�

og

����
W

�
h0b�x; 0�

�
; �22�

where h is the local heat transfer coe�cient, the sub-

scripts b and p indicate the basic and perturbed ¯ows,

and k is the ¯uid thermal conductivity. It is noted that

NuX is based on the thermal boundary condition of the

constant wall temperature.

3. Numerical procedure

A ®nite di�erence scheme based on the weighting

function [10] with second-order accuracy in both g and x

is used. The step-by-step procedure is listed as follows:

1. Assign Pr;GrL and / to obtain the basic ¯ow and

temperature distributions. The value of Pr is 0.7

(for air) and 7.0 (for water), GrL � 108, and the values

of / are 0°; 5°; 10°; 15°; 20°; 30°; 45°; 60°, and

70°.

2. Assign zero initial values of u, v; w, and n, the initial

temperature at the leading edge, t0 � 10ÿ4 and vari-

ous values of the wave number a.

3. Solve Eqs. (17)±(19) for u; t and n distributions at the

next x-step. Values of n on the boundary are evalu-

ated with the previous iteration data of v and w in

the interior region.

4. Solve Eqs. (20) and (21) for v and w with the obtained

u and n.

5. Repeat steps 3 and 4, until the perturbation quanti-

ties meet the convergence criteria at the streamwise

position

Max
F �n�1�

i; j

��� ���ÿ F �n�i; j

��� ���
F �n�1�

i; j

0@ 1A6 10ÿ5;

where F �n�i; j are the perturbation quantities u; v; w; t and

n of the nodal point �i;j� at the nth number of iter-

ation.

6. Calculate the local Nusselt number of the vortex

¯ow.
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7. Repeat steps 3±6, at the next mainstream position un-

til a desired mainstream position is reached.

8. The absolute values of perturbation quantities grow

along the mainstream direction. One can ®nd the

mainstream position marked with xcr, where the onset

criterion Nup=Nub � 0:1 is satis®ed. Various onset po-

sitions xcr can be determined for di�erent values of

the wave number a. The minimum xcr denoted by x�

is the most probable onset position and the corre-

sponding wave number is denoted by a�. The local

critical value is Gr�X � GrLx�3 and the local wave num-

ber is a�x�2=5 for this computation.

The criterion for the determination of the onset of

longitudinal vortices using the technique of heat transfer

measurement in experiments can be explained as fol-

lows:

It was known that heat transfer rate can be increased

by introducing a secondary ¯ow. The onset position can

be determined by a comparison of the heat transfer rate

between the measured values of secondary ¯ow and the

basic ¯ow data (6±30% of Nup=Nub by Incropera et al.

[11], 15% of Nup=Nub by Maughen and Incropera [12],

10% of Nup=Nub by Chou and Han [13], etc.). Also, by a

comparison of the onset criterion between

Nup=Nub � 0:2 and Nup=Nub � 0:1 in the numerical ex-

periment, the values of the onset position x� increases by

less than 4%. It is reasonable to set Nup=Nub � 0:1 for

the onset criterion of longitudinal vortices in the nu-

merical solution by heat transfer measurement tech-

niques.

The grids tested for various Dx; Dg and g1 are listed

in Table 1. A grid size of Dx � 0:002; Dg � 0:02 and

g1 � 10 is used to perform the numerical experiment in

the present study. To check the validity of the linear

equations (16)±(20), the order of magnitude of the

nonlinear terms of perturbation equations near the onset

position are checked. The calculated data are substituted

into the individual terms of the x-momentum equation.

The orders of the nonlinear terms is two orders of

magnitude less than the order of linearized inertia terms.

Therefore, the linear theory is valid for the estimation of

the onset of longitudinal vortices in a laminar natural

convection ¯ow over horizontal and inclined heated

plates.

4. Results and discussion

A typical development of the dimensionless pertur-

bation amplitudes u; v; w, and t at x � 0:1; 0:12, and

0.14 for Pr � 0:7; GrL � 108; a� � 1:6, and / � 0° is

shown in Fig. 2. The magnitudes of v and w are larger

Table 1

Grid size test for GrL � 108, a� � 1:6, Pr � 0:7 and / � 0°

g1 Dx Dg x � 0:04 0.08 0.12 0.14 0.16

10 0.002 0.02 0.01821a 7.240 78.66 955 123� 102

10 0.002 0.01 0.01818 7.180 77.18 941 121� 102

10 0.001 0.02 0.01818 7.172 77.10 938 119� 102

15 0.002 0.02 0.01818 7.178 77.14 940 120� 102

a These are the maximum values of the perturbation temperature t=0:01 at the speci®ed x position.

Fig. 2. Development of perturbation amplitude pro®les at speci®ed x positions for / � 0° and Pr � 0:7.
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than those of u and t because the scaling factor

�L=m�Grÿ1=5
L is included in these quantities. The shapes of

the v and w pro®les may be regarded as a vortex pattern.

It is noted that a reversed velocity pro®le near the wall

was induced downstream of the linear development re-

gion of the longitudinal vortices.

Fig. 3 depicts the dimensionless perturbation ampli-

tude functions at x � 0:24; 0:26 and 0.28 with the value

of the inclined angle / � 30°. It is seen that the values of

perturbation amplitude functions are decreased with the

stabilizing e�ect of the increased inclined angle /. It is

also observed in this ®gure that the pro®les of pertur-

bation amplitude functions are shrunk to the smaller g
region due to the angle e�ect.

It is also interesting to study numerically the varia-

tions of local heat transfer rate after the onset of

longitudinal vortices. The perturbation heat transfer rate

Nup behaves like a cosine function in the Z-direction

(i.e., Nu / �oT=oY � / exp�ia0Z�). Although the mean

values of heat transfer rate in one spanwise wave are

zero, the maximum variation of local heat transfer rate

along z-direction occurred at z � 0 and z � 2p=a. The

variations of local NuX=Nub along the axial direction at

z � 0 are shown in Fig. 4. The correlation equation for

the turbulent-free convection for the horizontal plate is

also shown for comparison [14,15], i.e.,

NuX � 0:13�Pr GrX �1=3

or

NuX

Nub

� 0:13�Pr GrX �1=3

0:3545Gr1=5
X

� 0:3256Gr2=15
X ; �23�

where h0b�X ; 0� � 0:3545 at / � 0° and Pr � 0:7 is

chosen for reference.

The gradients of the temperature at the wall start to

deviate from the laminar natural convection at down-

stream of x�, due to the secondary longitudinal vortex

¯ow on the heated plate. The angle e�ects on the

longitudinal vortices are less pronounced when the

values of the inclined angle / increases.

The physical meanings of the critical values of Gr�X ,

and the local critical wave number a�x�2=5 can be inter-

preted as follows: they may be converted to Gr�dr
and

a0� dr, respectively, by the following transformations:

Gr�dr
� Gr�2=5

X ; a0dr

ÿ �� � 2p
k

X

Gr1=5
X

 !�
� ax2=5
ÿ ��

;

�24�

Fig. 3. Development of perturbation amplitude pro®les at speci®ed x positions for / � 30° and Pr � 0:7:

Fig. 4. Nusselt number vs. Grashof number.
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where the local boundary layer characteristic thickness

dr � X=Gr1=5
X .

The e�ect of inclined angle / on the critical Grashof

number Gr�dr
is listed in Table 2. It is observed from the

data that an increase in the inclined angle / increases the

value of the critical Grashof number Gr�dr
. The ¯ow is

more stable due to a decrease in the buoyancy force in

the normal direction. Figs. 5 and 6 summarize the results

of the present and previous works on the thermal in-

stability in natural convection boundary layers. It is seen

in Fig. 5 that there is a signi®cant di�erence of one to

two orders in magnitude between the experimental data

and the previous theoretical prediction by using the

nonparallel ¯ow model and considering �o=og�x �
�o=ox�g [8,16]. It is shown in Fig. 6 that the Prandtl

number has a destabilizing e�ect on the ¯ow and the

critical values of the Grashof number decrease with an

increase in the Prandtl number. The experimental data

of Tollmien±Schlichting wave mode for / > 70° are also

shown for comparison. The results of the present study

show a reasonable agreement with the previous experi-

mental results [17±20].

In the above analysis, three sets of parameters are

used. The three sets of parameters are summarized and

discussed as follows. First of all, x� and a� are sought by

using ®xed Pr and GrL. Secondly, x� and a� are converted

to Gr�X and a�x�2=5. Finally, Gr�dr
and �a0dr�� are used. The

®rst set of parameters mainly comes from the length

scale of plate. The second set of parameters considers

the buoyancy to viscous force ratio of the boundary

layer. The third set of parameters is derived from the

characteristic thickness of the boundary layer.

Table 2

Onset position x� for criterion Nup=Nub � 0:1a

/ (deg) Pr � 0:7 �a� � 1:6� Pr � 7:0 �a� � 4:8�
x� Gr�dr

a0�dr x� Gr�dr
a0�dr

0 0.098 97.6 0.632 0.026 19.9 1.11

5 0.118 121.9 0.680 0.034 27.4 1.24

10 0.142 152.2 0.733 0.044 37.3 1.38

15 0.170 189 0.788 0.056 49.9 1.52

20 0.206 238 0.850 0.070 65.2 1.66

30 0.298 371 0.986 0.108 110 1.97

45 0.524 730 1.24 0.198 227 2.51

60 1.038 1646 1.62 0.410 544 3.36

70 1.998 3623 2.11 0.888 1374 4.58

a Values are evaluated by using GrL � 108 and t0 � 10ÿ4.

Fig. 5. Relation between the critical values Gr�dr
and wave

number a0�dr. Fig. 6. Critical Grashof number vs. inclined angle /.
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5. Conclusions

1. The e�ect of the inclined angle from the horizontal on

the stabilization of the thermal instability in natural

convection boundary layers is studied numerically

by using the heat transfer rate onset criterion and a

linear instability model.

2. An increase in the inclined angle / increases the value

of the critical Grashof number Gr�X . The ¯ow is more

stable due to a decrease in buoyancy force in the nor-

mal direction. The e�ects of inclined angle on the

Nusselt number are less pronounced when the values

of the inclined angle / increase.

3. The Prandtl number has a destabilizing e�ect on the

¯ow and the critical values of the Grashof number

decrease with an increase in the Prandtl number.

The results of the present study show a reasonable

agreement with the previous experimental data.
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